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Optimal certification policy, entry, and
investment in the presence of public signals
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We explore the optimal disclosure policy of a certification intermediary where (i) the seller de-
cides on entry and investment in product quality, and (ii) the buyers observe an additional public
signal on quality. The optimal policy maximizes rent extraction from the seller by trading off
incentives for entry and investment. We identify conditions under which full, partial or no disclo-
sure can be optimal. The intermediary’s report becomes noisier as the public signal gets more
precise, but if the public signal is sufficiently precise, the intermediary resorts to full disclosure.
However, the social welfare may reduce when the public signal becomes more informative.

1. Introduction

� Certification intermediaries are a common feature in many markets where the consumers
may not be able to readily assess the quality of the sellers’ products. For example, credit rating
agencies certify financial instruments, auditors certify the financial standings of organizations,
numerous professional groups certify the qualifications and skills of their members, and a large
numbers of agencies and laboratories offer certification service for product safety. It is also inter-
esting to note that in such markets, the certification intermediaries are often not the only source
of information as the consumer may have access to some information that is publicly available.
For example, in the United States, the investors in a publicly traded company not only consider
the firm’s credit rating but also its filings with the Securities and Exchange Commission as they
are informative about the firm’s overall financial strengths. Similarly, even when a firm gets its
product certified by an intermediary, other non-profit independent agencies such as Consumer
Reports can also publicly rate its product and serve as an additional source information.
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There is a vast literature on certification intermediaries that studies how their presence might
improve the trade efficiencies by alleviating the adverse selection problem in the marketplace
through the provision of relevant information (Lizzeri, 1999). The reduction in information asym-
metry between the trading parties can also enhance the sellers’ incentives to invest in quality and
improves allocational efficiency (Albano and Lizzeri, 2001), but the presence of an intermediary
also has redistributive effects. By charging a fee for its certification service, the intermediary can
extract the surplus (or a part of it) that the seller expects to earn in the product market.

Such redistributive effects, in turn, have efficiency implications as well. Clearly, the seller’s
investment level, though enhanced in the presence of an intermediary, stays inefficiently low as
the intermediary captures parts of the resulting gains, but the presence of an intermediary can
also distort the seller’s entry incentives, as the intermediary can extract more surplus than what
it helps to create. A seller typically incurs a fixed cost to set up operations when breaking into a
market, and such cost becomes sunk after entry. Thus, the intermediary may stymie entry if the
seller’s share of the trading gains falls short of its entry cost.

The extant literature on certification intermediaries has not fully explored the interplay be-
tween such redistributive and the efficiency effects as the extent of entry is usually assumed to
be exogenously given. In this article, we consider a setting where the level of entry by the sellers
is endogenous. In such an environment, the presence of the intermediary gives rise to a novel
trade-off: it enhances a seller’s incentives to invest in quality following entry but mutes his in-
centive to enter in the first place. The goal of this article is to explore the intermediary’s optimal
certification policy in the face of this trade-off. We also analyze how the informativeness of the
intermediary’s signal interacts with the precision of the public signal on quality and draw out its
welfare implications.

We consider a model of certification intermediary with the following key features. The
intermediary commits to a policy that specifies a certification fee and a disclosure policy (we
will elaborate on this shortly). Upon observing the certification policy, the seller decides whether
to enter by incurring a fixed cost, and following entry, whether to invest to improve its product
quality. The investment increases the likelihood of producing a high quality product, and the cost
of investment depends on the seller’s private type. After the quality is realized, the seller decides
whether to use the intermediary’s service. The buyers cannot directly observe the quality but can
obtain relevant information from two sources: a public signal whose precision is exogenously
fixed, and the intermediary’s signal (i.e., whether the seller has certified his product, and if so,
what signal the intermediary has released). The buyers offer a bid for the product that is driven
by their belief about the product quality, given the available information.

As in Lizzeri (1999), we define a disclosure policy as a probability distribution over a set
of signals conditional on the quality of the seller’s product. Such a specification accommodates
the extreme cases of full and no disclosure as well as the more generic case of partial disclo-
sure where the intermediary reveals a garbled information about the underlying product quality.
Also, in order to highlight the interplay between the entry and investment incentives in the most
transparent way, we restrict parameters such that entry is always efficient but investment may be
inefficient in the absence of the intermediary.

We derive three sets of results. First, we characterize a “full-disclosure” benchmark where
the intermediary is required to reveal the quality without any noise should the seller opt to use its
service. In particular, we argue that the optimal certification fee distorts entry if and only if the
entry cost is sufficiently large (Proposition 1).

The intuition is as follows. With mandated full disclosure, the intermediary’s problem is
similar to that of a “standard” monopolist—by charging a higher certification fee, the interme-
diary can extract more rents from the seller but also reduces the likelihood that the seller would
choose to certify his product. Note that with full disclosure, only a seller with high quality prod-
uct may opt to certify. Thus, in order to ensure that the intermediary faces a robust demand for its
service, it must protect both the entry and the investment incentives of the seller. In other words,
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the intermediary chooses the certification price so as to trade off the gains from rent extraction
with the losses from both the entry and the investment distortions.

When the entry cost is low, the optimal certification fee does not affect the seller’s entry
incentives, but as the entry cost increases, the incentives for entry may diminish and the interme-
diary must reduce its certification fee in order to induce full entry. However, when the entry cost
is sufficiently large, accommodating entry for all types of the seller is too costly. In response,
the intermediary chooses a price such that entry is viable only if the seller also invests in quality
(following entry), and all seller types with relatively high investment cost are foreclosed from
the market.

Our second key finding offers a characterization of the intermediary’s optimal disclosure
policy. For expositional clarity, we state the key features of the optimal policy in a series of
propositions (Propositions 2, 4, and 5), and present the analysis in two steps. We first consider
the case where the public signal is completely uninformative, and then study the implications of
an informative public signal.

We show that in the absence of any public signal, the optimal disclosure policy offers full
disclosure only if the entry cost is sufficiently small but calls for partial disclosure otherwise. In
the optimal partial disclosure policy, the low quality seller, with some probability, receives the
same certification that the high quality seller gets. Moreover, entry is always efficient, and under
partial disclosure, the seller always uses the intermediary irrespective of his product quality.

To see the argument, recall that under full disclosure, the optimal certification fee trades
off the gains from rent extraction with the losses from diminished incentives for both entry and
investment, and when it is optimal to induce full entry, the intermediary significantly lowers
its certification fee in order to incentivize entry of all types. As a result, it ends up leaving a
large amount of rent with the high-quality seller. In contrast, a noisy disclosure can allow the
intermediary to extract more rents from the seller where the resulting damage to entry incentives
is partly restored through a garbling of information. By partly pooling the low and high quality
seller, the intermediary can increase its payoff by ensuring efficient entry and inducing the seller
to use its service irrespective of the realized quality level. This is due to the fact that under partial
disclosure, even a low quality seller expects to be pooled with the high quality and fetch a higher
bid from the buyers, whereas the buyers may believe the seller to be of low quality if he does not
use the intermediary.

Next, we allow for an informative public signal. In this case, the optimal policy becomes
considerably more nuanced. In particular, as the precision of the public signal increases, the
intermediary’s report gets increasingly more noisy, and eventually becomes absolutely uninfor-
mative. Such a partial or no disclosure policy remains optimal only for a moderate range of entry
costs (full disclosure being optimal otherwise), and this range decreases with the public signal’s
precision. Once the public signal becomes sufficiently precise, the intermediary resorts to full
disclosure irrespective of the cost of entry. In other words, the public signal and the intermedi-
ary’s report interact as substitutes as long as the public signal is not too precise, but otherwise,
they become complements.

The intermediary offers partial disclosure so as to manipulate the spread between the buyers’
bids that a high- and a low-quality seller expect to receive in the product market, but as the
intermediary’s signal is (weakly) informative, its ability to influence the buyers’ belief, and hence,
their bids, is constrained by the precision of the public signal. Until this constraint is binding,
the intermediary adds more noise to its signal as the public signal becomes more precise and
implements the desired spread in the bids, but once this constraint becomes binding, it is optimal
for the intermediary not to disclose any further information.

However, when the public signal is relatively precise, the low-quality seller anticipates a low
bid for the buyers (irrespective of how noisy the intermediary’s report is). So, if the intermediary
were to induce all types of sellers to enter and use its service, even with partial disclosure, it
must offer a significant reduction in the certification fee. Instead, it may be more profitable for
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the intermediary to switch back to full disclosure and charge a higher fee in order to extract rents
from the high-quality sellers only.

Our third key result analyzes how the social welfare under the intermediary’s optimal policy
varies with the precision of the public signal (Proposition 6). We show that, contrary to the
common intuition, a more precise public signal on quality can lead to a decrease in the social
welfare. These findings stem from the fact that an increase in the precision of the public signal
can lead to a regime change in the intermediary’s disclosure policy where it switches from partial
disclosure with full entry to full disclosure policy with restricted entry (when the entry cost is
sufficiently large). The resulting welfare loss due to the entry inefficiency can outweigh the gains
due to stronger investment incentives, and can lead to an overall drop in the social welfare.

Related literature: There is by now a large literature on the role of certification intermediaries
in markets plagued by asymmetric information (some early contributions include, among others,
Biglaiser, 1993; Biglaiser and Friedman, 1994; Lizzeri, 1999; and Albano and Lizzeri, 2001; also
see Dranove and Jin, 2010, for a survey). As briefly discussed earlier, Lizzeri analyzes the role
of certification intermediaries in a model of adverse selection, and shows that the optimal choice
for the intermediaries often entails no disclosure or partial closure in the form of minimum qual-
ity certification. Although Lizzeri assumes that the seller’s product quality is exogenously fixed,
Albano and Lizzeri (2001) extends Lizzeri’s model to endogenize the quality. They analyze the
issue of the optimal degree of information revelation and show that the presence of intermedi-
ary enhances efficiency by increasing the sellers’ incentives to provide high quality (though the
full information first-best allocation remains infeasible).1 Dubey and Geanakoplos (2010) also
consider the optimal grading scheme in inducing students’ efforts and show that coarse grading
(i.e., partial disclosure) often motivates the students to work harder when the students care about
their relative rank in the class,2 but in contrast to our setup, these models abstract away from the
question of the seller’s entry incentives and the interplay between the public signal on quality and
the intermediaries’ disclosure policy (i.e., they assume that the seller is already in the market and
the intermediary is the only source of information for the buyers).

A recent article by Harbaugh and Rasmusen (2018) explores how certification intermedi-
aries may influence the sellers’ entry decision. As in our article, they show that coarse grading—
that is, partial disclosure—is used to induce more participation by the sellers. However, they con-
sider a pure adverse selection model without investment. More importantly, they assume a non-
profit certifier whose objective is to enhance the amount of information available to the buyers
when the seller incurs an exogenous certification cost. Our model, in contrast, assumes a profit-
maximizing certifier with an endogenous certification price, and the cost of garbling information
comes from reduced investment incentives rather than from the loss of information per se.3

Our article is also related to the literature on the optimal design of information structure (Os-
trovsky and Schwarz, 2010; Kamenica and Gentzkow, 2011; Rayo and Segal, 2010).4 Kamenica
and Gentzkow analyze the general Bayesian persuasion problem in which a sender chooses the
optimal information structure for a signal to be revealed to a receiver, and derive general condi-
tions under which the sender may benefit by controlling the informational environment. In the
specific context of monopoly pricing, Roesler and Szentes (2017) consider an information design
problem in which a single buyer can design her own information about her willingness-to-pay
before she faces a monopolist seller. As in the Bayesian persuasion literature, we also assume
that the intermediary can precommit to a particular disclosure policy. However, in our setting

1 In a related article, Belleflamme and Peitz (2014) assume that consumers observe the investment (but not the re-
alization of the product quality) and show that the firm overinvest in quality compared to the full information benchmark.

2 Similar issues are also discussed by Costrell (1994) and Boleslavsky and Cotton (2015).
3 Hui et al. (2018) empirically explore a related issue. Using a change in the certification policy at eBay as a natural

experiment, they study how the policy may affect the entrants’ types and the sellers’ behavior. However, in their setting,
the policy is set exogenously, and the certification is offered by eBay for free.

4 See Bergemann and Morris (2019) for an excellent survey that presents a unified approach to the recent informa-
tion design literature. For an analysis of a Bayesian persuasion game with voluntary participation, see Rosar (2017).
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the intermediary’s problem cannot be modeled as a standard sender’s problem because the dis-
tribution of the product quality (i.e., the underlying “state of the world” that the sender reveals
information on) is endogenous to the sender’s disclosure policy.5

Two articles in the information design literature are particularly relevant to our work:
Kolotilin et al. (2017) and Guo and Shimaya (2019). Both of these articles analyze the infor-
mation design problem with a privately informed receiver. As in our analysis, they consider a
situation in which the receiver has multiple sources of information. However, their focus is on
the case where the receiver’s additional information is private and it leads to a monopoly screen-
ing problem. Kolotilin et al. (2017), for instance, consider a setting in which the receiver has
private information about his preference type, and address the question of whether the sender
can benefit from designing a complex persuasion mechanism that conditions information disclo-
sure on the receiver’s report about his type. They demonstrate the equivalence of implementation
by persuasion mechanisms and by simple experiments that disclose information independent of
the receiver’s type. In Guo and Shimaya’s (2019) analysis, the receiver has private information
about the quality of the project the sender persuades him to accept. They show that the optimal
screening mechanism is characterized by a nested interval structure. These articles, however,
do not assume any monetary transfer for information disclosure, as is typical in the Bayesian
persuasion literature.

In contrast, in our model the information is sold at an endogenously determined price and
the price of information is an important consideration in the choice of disclosure policy. Like
our article, Bergemann et al. (2018) consider a monopolistic seller of information about a state
variable that is relevant to the buyer’s decision. In their model, the buyer has private knowledge
about his decision problem at the time of contracting. Instead, we consider a public signal as
another source of information that arises after contracting, thereby abstracting from the issue
of screening.

Finally, it is worth noting that our analysis on the interplay between the informativeness of
the intermediary and the precision of the public signal is related to the literature on the adverse
consequences of transparency (if we interpret more precise public signal as more transparency in
an agency relationship). Prat (2005), for instance, shows that an agent with career concerns may
ignore his signal, to the detriment of the principal, and behave as a conformist when his action
is observed (i.e., transparent). Levy (2007) considers the effect of transparency on committee
decisions and identifies circumstances under which a secretive committee that uses a particu-
lar voting rule makes better decisions on average. Their analyses, however, are in completely
different contexts and rely on career-based reputation effects.

The remainder of the article is organized as follows: In Section 2, we present our model. A
benchmark case of full disclosure is analyzed in Section 3. For expositional clarity, we present
the analysis of the optimal certification policy in two steps. First, in Section 4, we characterize the
optimal disclosure policy when the public signal is completely uninformative. Next, in Section 5,
we analyze the general case with an informative public signal. The welfare implications of the
intermediary’s optimal policy is explored in Section 6. Section 7 presents a conclusion. All proofs
are given in the Appendix.

2. Model

� Players. We consider an environment with three types of players: a seller, a certification
intermediary, and a set of identical buyers.

Actions and payoffs. The seller decides whether to enter a market to sell his product to a set of
identical buyers. The buyers’ valuation of the seller’s product is based on its quality. The product

5 Boleslavsky and Kim (2018) studies optimal information design when an agent’s private effort determines the
distribution of an unobservable state. In contrast to their setup, we also have an element of adverse selection with hetero-
geneous agent types and additional constraint on the entry.
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quality could be either high or low and generates a value v ∈ {0, 1} for the buyer, where v = 0 if
the quality is low and v = 1 if it is high.

If the seller decides to enter the market, he incurs an entry cost of k. The entry cost may
be interpreted as a sunk cost that the seller pays to set up his operations in the marketplace
regardless of the quality of his product.6 Upon entry, he can undertake an investment in quality
in order to increase the likelihood of producing a high quality product. Let I ∈ {0, 1} denote the
seller’s investment decision where I = 1, if he invests in quality and I = 0 otherwise. We have

Pr (v = 1 | I = 1) = α >
1

2
= Pr (v = 1 | I = 0). (1)

The cost of this investment is determined by the seller’s type θ ∈ [0, 1], which is assumed to be
uniformly distributed on [0, 1]. For a seller of type θ , the cost of investment is c/θ for θ �= 0 and
C(> 1) for θ = 0. The seller’s type is his private information and known to him before he makes
his entry decision.7,8

The product quality is also privately observed by the seller, leading to an information
asymmetry in the product market, but the buyers can obtain information on quality through
two channels.

First, the seller can hire a certification intermediary who can verify the quality and dis-
close additional information for a fee. The intermediary is assumed to be a monopolist in
the market for certification services, and it verifies the quality without incurring any cost. At
the beginning of the game, the intermediary commits to a certification price p and a disclo-
sure policy D that specifies what it may disclose to the buyers, given the underlying qual-
ity of the product. However, the intermediary may not fully reveal the quality of the prod-
uct and can potentially garble its report. In order to allow for such a noisy disclosure, we
define a disclosure policy as a mapping D : {0, 1} → �X where X is a pre-specified signal
space (and hence, a part of the policy). That is, the disclosure policy sends a signal x ∈ X that
is drawn according to a given probability distribution, conditional on the true quality of the
product.

Second, in addition to the intermediary’s signal, the buyers observe a public signal z ∈ {0, 1}
that provides noisy information about the product quality, where

Pr (z = j | v = j) = π ∈ [1/2, 1), for j = 0, 1.

The parameter π represents the precision of the public signal, when π = 1
2

the pubic signal is
completely uninformative.

The seller makes his entry decision after observing the intermediary’s offer (p,D). More-
over, the seller decides on whether to hire the intermediary after the quality realization but before
the public signal is realized. The intermediary, if hired, also reveals its report before the arrival
of the public signal.9 Observing the available signals on the quality, the buyers simultaneously
bid for the product, and the product is sold at the highest bid. All players are assumed to be
risk neutral. This implies that the product is sold at the expected value of the product given the
information available to the buyers.

6 We maintain the same interpretation of the entry cost as used in the canonical models of a firm’s entry decision;
see, for example, Spence (1976) and Mankiw and Whinston (1990).

7 For simplicity,we normalize the seller’s probability of producing a high quality product without any investment
to 1

2
. Also, if Pr(v = 1 | I = 0) < 1

2
< α, we may not have a unique equilibrium even in the absence of the intermediary,

and the characterization of the optimal policy becomes analytically intractable.
8 As no new information is revealed in the time between the entry and investment decisions, one can reinterpret

these two decisions as a choice between two modes of entry—entry with a “standard” technology at cost k, and entry
with an “advanced” technology at cost k + c/θ , where the latter mode is more likely to yield a high quality product.

9 As z is realized after the intermediary reveals its signal x, one can also interpret z as a signal that is privately but
commonly observed by the buyers.
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Timing. The following timeline summarizes the game:

• Stage 1: The intermediary commits to his certification policy (p,D).
• Stage 2: The seller observes his type θ and the intermediary’s policy, and decides whether to

enter by incurring a cost of k. (If there is no entry, the game ends.)
• Stage 3: If the seller enters, he decides whether to invest on quality at cost c/θ , and observing

his product quality v, decides on whether to hire the certification intermediary.
• Stage 4: The intermediary, if hired, reveals its signal x on the product quality.
• Stage 5: The public signal z on quality is revealed. Observing x (if available) and z, the buyers

bid for the product, and the product is sold at the highest bid.

Strategies and equilibrium concept. The strategies of the players are as follows: the intermediary’s
strategy is to choose a certification policy (p,D). The seller’s strategy has three components: (i)
entry and (ii) investment decisions given his type and the intermediary’s policy, and (iii) deci-
sion on hiring the intermediary given his product quality and the intermediary’s policy. Finally,
the buyers’ strategy is to choose a bid given the available information (i.e., the public signal,
the intermediary’s certification policy, whether the intermediary was hired or not, and if hired,
the intermediary’s report). We use (pure strategy) perfect Bayesian Equilibrium (PBE) as the so-
lution concept. The optimal disclosure policy is defined as the (p,D) pair that induces the highest
feasible equilibrium payoff for the intermediary.

We maintain the following parametric restrictions to streamline our analysis. Denote � :=
α − 1

2
.

Assumption 1. (i)
√

cα < �; (ii) c
2�
< k < 1

2
.

Assumption 1 implies that when the seller’s product quality is publicly observable, that is,
in the first-best scenario, the seller should always enter irrespective of his type (as k < 1

2
), and all

types of the seller above the threshold θFB = c
�

should invest. We impose a stronger restrictions
on the parameters than simply requiring c < � and k < 1

2
so as to simplify our analysis. The as-

sumption above allows us to focus on the part of the parameter space where the interplay of entry
and investment decisions is non-trivial and gives rise to a rich set of equilibrium characteristics.

3. Full disclosure

� We begin our analysis by exploring a simple case where the intermediary must fully disclose
the product quality (i.e., the intermediary only sets the price for its service, and the seller decides
whether or not to certify her product). The analysis of the full disclosure case clearly illustrates
the trade-offs that the intermediary faces when choosing its certification fee, and it is instructive
in understanding when and how a partial disclosure policy may be optimal.

What is the intermediary’s maximal equilibrium payoff under such a policy? The following
two observations considerably simplify our analysis. First, for any given certification policy of the
intermediary, the seller’s entry and investment decisions follow a cutoff rule: there exist cutoffs
θE and θI such that θE ≤ θI , all types θ ≥ θE enter, and all types θ ≥ θI invest. This observation
directly follows from the fact that as the seller’s cost of investment is monotonically decreasing in
his type (θ ) and all types face the same entry cost (k). Second, in the best equilibrium (with full
disclosure) for the intermediary only the high quality seller certifies its product, and the buyers
take a “skeptical posture” à la Milgrom and Roberts (1986)—they believe the product to be of low
quality if the seller does not hire the intermediary. Thus, the certification price p that maximizes
the intermediary’s payoff solves a “standard” monopolist’s pricing problem where the market
demand is Pr(v = 1 | θE, θI )—the probability that a high quality seller arrives on the market
(the marginal types for entry, θE and investment θI depend on the intermediary’s certification
price p).
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The intermediary can adopt one of two possible pricing strategies: (i) Set p ≤ pE := 1 − 2k
in order to induce all types of the seller to enter.10 As a result, we have θE = 0, and θI = c/(1 −
p)�, that is, the type that is indifferent between investing and not investing conditional on already
being on the market. (ii) Set p > pE such that lower types stay out and all types that enter also
invest in quality. Here, θI = θE , and θI = c/(α(1 − p) − k), that is, the type that is indifferent
between entering the market and investing after entry and not entering at all.

The intermediary’s maximization problem, therefore, is given as:

PF :

⎧⎪⎨⎪⎩
max

p≥0
� (p) := p Pr (v = 1 | θE, θI )

s.t. θE =
{

0 if p ≤ pE

θI otherwise
, and θI =

{
c/ (1 − p)� if p ≤ pE

c/ (α (1 − p) − k) otherwise
.

Let p∗ be the solution to the problem PF .

Proposition 1. (Optimal pricing under full disclosure) Under full disclosure, the optimal cer-
tification price distorts entry if and only if the entry cost is sufficiently large. In particular, there
exists an entry cost cutoff k∗ such that p∗ > pE iff k > k∗.

The intermediary faces a trade-off between rent extraction from the seller and preserving
the incentives of the seller to use the intermediary. By charging a high certification price the
intermediary can extract more rent from the seller but it also reduces the demand for the inter-
mediary’s service. As only the high-quality seller hires the intermediary (under full disclosure),
the intermediary benefits when the seller has a strong incentive to enter and invest in quality.
However, the larger is the certification price, the weaker is the seller’s incentive to invest as the
intermediary keeps a larger share of the trade surplus. Moreover, if there is not enough surplus
left for the seller to cover his entry cost, he may not enter the market in the first place. Thus, the
intermediary’s optimal pricing balances the gains from rent extraction and the losses from the
reduced demand for its certification service.

Consider the optimal certification price p′ (say) that the intermediary would have charged if
the seller were already on the market. In such a setting, the optimal price trades off the gains from
the rent extraction with the losses that emanates only from a weakened investment incentives of
the seller. If the entry cost is sufficiently low, the optimal price p′ is lower than pE , the certification
price below which entry remains efficient. Therefore, even in our setting the intermediary would
charge p∗ = p′, and all types of the seller would be on the market.

But pE is decreasing in the entry cost k. So, for a larger k, we have p′ > pE , and the seller
may not enter if his type (θ ) is sufficiently low (i.e., cost of investment is sufficiently high). As
long as the entry cost is moderately low (i.e., k < k∗), the intermediary is better off by lowering
its price to pE . By charging a lower certification price, the intermediary forgoes a part of the
rent that it could have extracted from the seller, but such a loss is more than offset by the gains
from increased likelihood of having a high-quality seller as the reduction in the certification price
restores full entry and also strengthens the seller’s incentives to invest.

However, when the entry cost is relatively large, accommodation of entry considerably hurts
the intermediary as it would require a significant reduction in the certification price. As a result,
when the entry cost crosses a threshold (k∗), the intermediary finds it optimal to restrict entry by
raising his certification price such that all types that enter also have incentive to invest in quality.

The analysis of the full-disclosure benchmark suggests that the optimal certification policy
may call for partial disclosure if it can allow the intermediary to extract more rents from the
seller without distorting entry. Below, we explore the optimal disclosure policy, and to facilitate
the exposition, we present our analysis in two steps. First, we study the optimal disclosure policy

10 The ex ante expected profit of a seller who enters (incurring a cost of k ) but does not invest is 1
2
(1 − p) − k

(with probability 1
2

his product turns out to be of high quality, in which case he hires the intermediary by paying p and
receives a bit of 1 from the buyers). Note that 1

2
(1 − pE ) − k = 0.
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when the public signal is completely uninformative. This step offers a sharp insight on how
partial disclosure can soften the trade-off between rent extraction and the seller’s incentives for
entry and investment. Next, we allow for the informative public signal, and explore how it affects
the intermediary’s behavior in the face of the aforementioned trade-off.

4. Optimal disclosure policy in the absence of the public signal

� In this section, we assume that the public signal z is completely uninformative, that is,
π = 1

2
, and characterize the optimal certification policy. The analysis must contend with a tech-

nical challenge: The set of disclosure policies for the intermediary is considerably large as both
the signal space X and the mapping {0, 1} → �X are endogenous to the model. Consequently,
it is seemingly difficult to solve for the optimal policy explicitly. Instead, we explore the inter-
mediary’s problem in terms of the set of (expected) bids from the buyers that can arise from
various disclosure policies, and upon obtaining the solution in terms of the bids, we characterize
a disclosure policy that results in (i.e., implements) those bids.

As the buyers bid competitively for the product, the equilibrium bid is simply the expected
quality of the product given the disclosure policy, the set of types who enter, �E , and invest,
�I , and the realized signals on quality, (x, z). For a given disclosure policy, let ti be the ex ante
expected bid (or “transfer” from the buyers) that the seller of quality i receives when he uses the
intermediary (but yet to learn the realization of the signals x and z). That is,

ti = E(x,z)|v=iEv[v | x, z, �E, �I], i ∈ {0, 1}. (2)

The intermediary’s certification policy—certification price p and disclosure policy D—can
be represented by the triplet (p, t0, t1). Under a strictly partial disclosure policy, we have 0 < t0 <

t1 < 1, whereas under full disclosure, t0 = 0 and t1 = 1. As noted earlier, in any equilibrium, the
set of types that enter and invest are pinned down by their respective cutoffs, θE and θI (say), so
�E = [θE, 1] and �I = [θI, 1]. Also, as we assume for now that the public signal is completely
uninformative, its realization (z) does not affect the buyers’ belief.

The following lemma further simplifies our analysis.

Lemma 1. If a partial disclosure policy is optimal, it must entail “full market coverage”: in
equilibrium, (i) all types (θ ) of the seller enter the market, and (ii) the seller hires the intermediary
irrespective of his product quality.

This result stems from the following two observations: First, if the intermediary prefers to
sell its service only to the high quality seller, it is best to maximize the difference in bids that a
low and a high quality seller would receive from the buyer. Clearly, this is achieved through full
disclosure as it removes the information asymmetry between the buyers and the seller. Second,
in any equilibrium, if only some types of the seller enter it must be the case that those types who
enter also invest,11 but if the intermediary only intends to induce entry of those types who would
invest as well, it can be argued that it is again (weakly) optimal to use full disclosure. Thus, if
partial disclosure is indeed optimal, it must induce full market coverage.

An important implication of Lemma 1 is that in order to solve for the optimal disclo-
sure policy, without loss of generality, we can look for the optimal partial disclosure with
full market coverage, and compare the associated payoff of the intermediary with the its full
disclosure counterpart.

We maintain the buyers’ off-equilibrium belief that is most favorable to the intermediary,
i.e., if the seller chooses not to use the intermediary, the buyers believe the quality to be low

11 As the entry cost is the same for all types, if its profitable for some type θ to enter even though it would not
invest following entry, then entry must be profitable for all types of the seller.
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and bid 0. Thus, for all types of the seller to enter and certify regardless of the realized product
quality, the certification price p must satisfy the following two constraints:

1

2
(t0 + t1) − k − p ≥ 0, (IRE )

and

t0 − p ≥ 0. (IRC )

The (IRE ) constraint is the individual rationality condition for entry and states that it is
profitable for all types (θ ) of the seller to enter the market even if he decides not to invest in
quality. The (IRC ) constraint ensures that the seller has incentives to certify even when his product
quality is low. So, for any disclosure policy (t0, t1) with full market coverage, the intermediary’s
payoff is:

�(p) = p = min

{
t0,

1

2
(t0 + t1) − k

}
.

Let v(θI ) be the “prior” expected value of the product—that is, the probability that the seller’s
product is of high quality (i.e., v = 1) given that all types enter and all types above θI invest, but
without any information on the signals. That is,

v(θI ) := E[v | �E = [0, 1], �I = [θI , 1]] = 1

2
θI + α(1 − θI ).

Now, any disclosure policy (t0, t1) must satisfy the following two conditions: First, a Bayes
rationality (BR) condition that requires the expected posterior mean of the quality must be equal
to its prior mean:

v(θI )t1 + (1 − v(θI ))t0 = v(θI ). (BR)

Second, if it is incentive compatible for all types θ ≥ θI to invest, the marginal type (if strictly
below 1) must be indifferent between investing and not investing. That is, we must have (t1 −
t0)� = c/θI , or,

θI = min

{
c

(t1 − t0)�
, 1

}
. (IC)

Hence, the intermediary’s optimal partial disclosure policy solves the following program:

PP : max
t0, t1, θI ; t0≤t1

min

{
1

2
(t0 + t1) − k, t0

}
s.t. (BR), and (IC).

We can now characterize the intermediary’s optimal policy by comparing his payoff in PF

and PP, that is, the optimal payoff under full disclosure and partial disclosure (with full market
coverage).

Proposition 2. (Optimal policy without public signal) The optimal certification policy ensures
efficient entry but leads to inefficiently low investment. Moreover, there exists an entry cost cutoff
k ′ < k∗ (where k∗ is as defined in Proposition 1) such that:

(i) For k ≤ k ′, the intermediary offers full disclosure, and only the high-quality seller certi-
fies his product.

(ii) For k > k ′, partial disclosure is strictly optimal, and the seller certifies his product irre-
spective of the quality.

Proposition 3. (Implementation) The optimal disclosure policy can be implemented by the
following signal structure: X = {x0, x1} and

Pr (x = x1 | v) =
{

1 if v = 1
ρ if v = 0

.
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Propositions 2 and 3 show that the optimal policy has a simple feature. Partial disclosure is
used only if the entry cost is sufficiently large. In fact, partial disclosure may be called for even
when the optimal certification fee under full disclosure would have induced full entry (note that
k ′ < k∗). Also, the partial disclosure can be implemented by a binary signal structure where a
“low” rating (x0) surely indicates low quality but a “high” rating (x1) is an inconclusive signal of
quality. The intermediary always gives the high quality seller the “high” rating (x1), but the low
quality also gets the same high rating with some probability.

To see the intuitions for these results, recall the trade-off with certification price under full
disclosure. A larger price extracts more rents from the seller (who uses the intermediary) but
reduces the likelihood that the seller would use the intermediary in the first place. The reduction
in the demand for the intermediary’s service stems from the fact that when the intermediary
extracts a larger share of the trade surplus, both the investment and the entry incentives of the
seller are muted.

This trade-off could be softened with partial disclosure. By partially pooling the low quality
seller with the high-quality one, the intermediary can ensure that an entrant gets a relatively
high bid from the buyer even if he ends up with a low quality product. Thus, such a policy can
induce all types of the seller to enter and use the intermediary irrespective of the product quality
even if the intermediary charges a moderately high certification fee. (Though partial disclosure
dampens investment incentives, it does not affect the intermediary’s payoff as the seller uses the
intermediary irrespective of his product quality.) The resulting payoff dominates its counterpart
under full disclosure when the entry cost is sufficiently large. Indeed, when the entry cost is high,
the intermediary’s payoff under full disclosure gets dampened as the intermediary either sharply
lowers its price in order to induce entry for all types of the seller (when k is large but still below
k∗) or forecloses the market for the types with relatively high investment costs (if k > k∗).

5. Optimal disclosure policy with public signal

� How would the optimal certification policy change if the public signal z is indeed infor-
mative, that is, what if π ∈ (1/2, 1)? As before, we can obtain the optimal policy by comparing
the intermediary’s optimal payoffs under full and partial disclosure. Clearly, the analysis of full
disclosure remains unaltered (recall that under full disclosure public signal do not affect the buy-
ers’ beliefs both on and off the equilibrium path.), but as we show below, the optimal partial
disclosure policy may depend on the public signal’s precision.

Notice that in order to solve for the optimal partial disclosure policy, we can again limit
attention to policies with full market coverage (Lemma 1 continues to hold as its argument does
not depend on the precision of the public signal). As before, the optimal policy abides by the
(BR) and incentive compatibility (IC) constraints, but in addition to these two constraints, the
intermediary’s program must also account for the fact that the public signal puts a bound on how
much the intermediary can influence the buyers’ posterior beliefs.

As the intermediary’s report must be weakly informative (i.e., its signal cannot take away
the information already contained in the public signal), we have the following bounds on the
expected bids ti:

t1 ≥ t1(θI ) := Ez|v=1Ev[v | z, �E = [0, 1], �I = [θI, 1]], (L1)

and

t0 ≤ t0(θI ) := Ez|v=0Ev[v | z, �E = [0, 1], �I = [θI , 1]]. (U0)

That is, the ex ante expected bid received by the high-quality seller when he uses the intermediary
(t1) cannot be lower than the bid he expects to receive when the buyers rely on the public signal
only (t1(θI )). Similarly, for the case of the low-quality seller, we have an upper bound on t0.
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Hence, the intermediary’s optimal partial disclosure policy solves the following program:

P ′
P :

{
max

t0, t1, θI ; t0≤t1
min

{
1
2

(t0 + t1) − k, t0

}
s.t. (BR) , (IC) , (L1) , and (U0) .

We can now characterize the intermediary’s optimal policy by comparing the values associ-
ated with the programs PF with P ′

P.

Proposition 4. (Optimal disclosure policy with public signal) There exist thresholds π and
πFD(π < πFD) such that:

(i) If π ≤ π , the optimal policy is the same as that in the case of a completely uninformative
public signal: Partial disclosure is optimal iff k > k ′ (where k ′ is as defined in Proposition 2).

(ii) If π ∈ (π, πFD], there exists an interval (k1(π ), k2(π )), where k ′ < k1(π ) ≤ k∗ ≤ k2(π ),
such that the optimal policy calls for no disclosure if k ∈ (k1(π ), k2(π )) and full disclosure oth-
erwise. Moreover, the interval shrinks with π .

(iii) If π > πFD, full disclosure is optimal for all k.

Proposition 4 illustrates how the optimal disclosure policy varies with the entry cost and
the precision of the public signal. When the public signal is relatively imprecise, the optimal
disclosure policy is identical to its counterpart in Section 4—partial disclosure is optimal if the
entry cost is sufficiently high and full disclosure is optimal otherwise.

When the public signal is relatively precise, full disclosure is optimal if the entry cost is
either too high or too low, and for the moderate values of the entry cost, the optimal disclosure
policy calls for full opacity—that is, the intermediary’s signal is pure noise. Moreover, this range
of entry cost (i.e., where no disclosure is optimal) gets smaller as the public signal becomes more
informative; when the public signal is sufficiently precise, full disclosure is optimal regardless of
the cost of entry.

The intuition for this result is as follows: Recall that the intermediary’s program PP (i.e.,
when public signal is uninformative) is a relaxed version of P ′

P. If the solution to PP is within the
bounds (L1) and (U0), it is also a solution to P ′

P. This is exactly the case when the public signal is
hardly informative (i.e., π is sufficiently small). When π is small, both t1(θI ) and t0(θI ) are close
to the prior expected value of the product, v(θI ), and hence, (L1) and (U0) are easily satisfied
as long as the intermediary’s report contains some information on quality (i.e., the buyers’ bids
t1 and t0 upon receiving the intermediary’s report would diverge from t1(θI ) and t0(θI )—their
beliefs on quality based on public signal only). Consequently, the optimal disclosure policy would
remain qualitatively the same as its counterpart in Section 4.

When the public signal is relatively precise, the bounds (L1) and (U0) are tighter and there
is less room for the intermediary to garble information. Indeed, when (L1) and (U0) bind, the
intermediary’s optimal partial disclosure policy tantamount to “no disclosure” as its signal no
longer contains any information on the product quality. Moreover, when (L1) and (U0) are already
binding, the intermediary’s payoff in P ′

P reduces with the precision of the public signal. As π
increases, t1(θI ) increases but t0(θI ) goes down. Therefore, even though the intermediary sends a
completely uninformative signal, it still has to reduce its certification fee to meet the (IRE ) and
the (IRC ) constraints—that is, to induce the seller to enter and certify his product.12 As a result,
partial disclosure policy (with full market coverage) becomes less profitable, and the range of
entry cost for which no disclosure is optimal shrinks.

Notice that when the public signal is informative, full disclosure can be optimal not only
when the entry cost is sufficiently low, but also when it is sufficiently high. As discussed earlier,

12 Even if the intermediary does not provide any information whatsoever, it still has a demand for its service (this
observation is reminiscent of Lizzeri, 1999). This is due to the fact that a seller who does not use the intermediary is
believed to offer a low quality product.

C© The RAND Corporation 2020.



CHOI AND MUKHERJEE / 1001

FIGURE 1

OPTIMAL DISCLOSURE POLICY AS A FUNCTION OFkANDπ

when the entry cost is low, the intermediary can easily accommodate full entry with only a modest
reduction in its certification price. However, when the entry cost is sufficiently large, under the
optimal partial disclosure policy, accommodating full entry would require a significant price
concession (as (IRE ) gets tighter). In contrast, under full disclosure the optimal certification price
remains high as entry is restricted (Proposition 1), and the associated payoff of the intermediary
is larger than its counterpart under partial disclosure. Figure 1 above depicts a generic example of
how the optimal disclosure policy varies with the entry cost and the precision of the public signal.

Proposition 4 has two key implications. First, in the presence of an informative public signal,
the optimal certification policy can indeed foreclose the market for some types of the seller; in
the absence of the public signal this is never the case. As we will see later, this observation has
important implications on social welfare.

Second, in equilibrium, the informativeness of the public signal and that of the intermedi-
ary’s report exhibit an interesting interplay.

Proposition 5. (Interplay between public and intermediary’s signals ) The optimal certifica-
tion policy can be implemented by the signal structure given in Proposition 3. Moreover, for any
given k > k ′ (where k ′ is as defined in Proposition 2) there exists a threshold of π (depending on
k), πFD

k , such that:

ρ =

⎧⎪⎨⎪⎩
ρ (π ) if π ≤ π̄

1 if π ∈ (π̄ , πFD
k ]

0 if π > πFD
k

,

and ρ(π ) ∈ (0, 1] is strictly increasing in π .
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The above finding indicates that as the public signal becomes more precise, the interme-
diary’s signal becomes less informative, but if the public signal becomes too precise, partial
disclosure ceases to be optimal and the intermediary’s signal becomes perfectly informative (as
the intermediary resorts to full disclosure). In other words, when the public signal is relatively
noisy, in the optimal policy, the informativeness of the intermediary’s signal behaves as a substi-
tute to that of the public signal. However, if the public signal becomes sufficiently precise, they
become complements as the intermediary opts for full disclosure.

To see the reasoning, consider a k > k ′ so that the optimal policy would call for partial
disclosure if the public signal were fully uninformative. Now, when π increases but is still small,
the bounds (L1) and (U0) remain slack. Hence, in equilibrium, the seller with quality v obtains the
same expected bid (tv) that he would have obtained in the absence of the public signal. In other
words, when the public signal gets more precise, the intermediary continues to filter information
so that the expected bids received by both the low- and the high-quality sellers remain unaltered.
The more precise the public signal, the more the intermediary needs to garble its own report so
as to keep the buyers’ beliefs unchanged. Thus, ρ increases with π .

In contrast, when the public signal is sufficiently precise (i.e., if π ≥ π ), at the optimal
partial disclosure policy, both (L1) and (U0) bind. As long as π is moderately large (given the
cost of entry), the optimal policy calls for no disclosure, and the intermediary sends the same
signal irrespective of the product quality, that is, we have ρ = 1, but as π increases further, the
optimal policy eventually switches from no disclosure to full disclosure where ρ = 0.

6. Welfare

� How does the presence of the intermediary affect the social welfare in terms of aggregate
surplus? Also, how does the aggregate surplus vary as the public signal gets more precise? As all
players are risk neutral and there are no inefficiencies at the trading stage of the game (the product
is always traded irrespective of the quality), the aggregate surplus in equilibrium only depends
on the extent of entry and investment efficiencies (or lack thereof). Thus, the efficiency implica-
tions of the intermediary are driven by the entry and investment cutoffs that the optimal policy
implements. Also, the value of the intermediary in terms of the social welfare can be ascertained
by comparing these cutoffs against their counterpart in the absence of the intermediary.

Let WI and WNI be the aggregate surplus in equilibrium with and without the intermediary,
respectively. The proposition below characterizes the welfare implications of the intermediary’s
optimal policy.13

Proposition 6. (Welfare implications of the intermediary) The value of the intermediary, WI −
WNI , is (weakly) decreasing in the public signal’s precision (π ). However, the welfare under
intermediary, WI , is non-monotonic in π . In particular, WI may decrease in π when π is in a
moderate range and the entry cost k is relatively large.

To see the intuition, it is instructive to consider the latter part of this result first. Recall from
Proposition 4 that if π is too small or too large, the optimal disclosure policy (in terms of the
bids t0 and t1 that it induces) is invariant to π . In the former case, partial disclosure is used if and
only if the cost of entry is larger than the cutoff k ′, and in the latter case, the intermediary always
uses full disclosure. Consequently, there is no change in welfare.

For moderate values of π , range of entry cost k over which no-disclosure is optimal—that
is, (k1, k2)—shrinks in π . Again, there is no change in welfare for values of k that are outside
this range as there is no change in the intermediary’s disclosure policy for such parameters, but
for values of k in (k1, k2), there could be different welfare consequences based on the value of k.

13 For expositional clarity, we only present the salient qualitative nature of the welfare functions. A more formal
version of the result is given in the Appendix along with the proof.
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If k is relatively small (i.e., closer to k1), the intermediary’s policy switches from no disclosure
to full disclosure and does not thwart entry. So welfare increases as entry remains efficient and
investment incentives improve. But for k relatively large (i.e., closer to k2), the policy switches
from no disclosure to full disclosure with restricted entry. Though investment incentives improve,
the entry inefficiencies outweigh the welfare gains from larger investments, and as a result, the
aggregate surplus decreases.

Next, consider the first part of Proposition 6. This statement confirms the common
intuition—there is less room for the intermediary to improve investment efficiency when the pub-
lic signal is already very precise (and entry is always efficient in the absence of the intermediary).
However, this argument is incomplete. This argument clearly holds when WI is non-increasing in
π as WNI always increases in π (due to sharper investment incentives), but for values of k where
WI is also increasing in π , it is a priori unclear how the difference WI − WNI would change.

Nevertheless, it can be shown that the gains in WI is (weakly) less than that in WNI . In
particular, for values of k where the intermediary’s policy switches from no disclosure to full
disclosure (when π increases), the cutoff type for investment remains larger than its counterpart
in the absence of intermediary, and for values of k where partial disclosure remains optimal, the
investment cutoffs are the same with and without the intermediary.

In this context, two remarks are in order. First, the above argument implies that there is
a threshold for the public signal’s precision above which the intermediary’s presence may be
detrimental to social welfare (particularly, when the entry cost is sufficiently large). Second, our
analysis sheds light on the welfare implications of mandatory disclosure where the intermediary,
if hired, is obligated to offer full disclosure. Though it may appear that urging the intermediary to
be more forthcoming with its information would always increase welfare, Proposition 6 suggests
that it need not be the case. Trivially, if the public signal is very precise, that is, if π > πFD, such
a mandate has no bite as full disclosure is the optimal policy, but if π < πFD, the mandate would
change the disclosure policy from no disclosure to full disclosure when (k1(π ), k2(π )). Such
a change would always enhance the seller’s investment incentives, but it would also introduce
insufficient entry if k ∈ (k∗, k2(π )) and would lead to a decrease in the social welfare.

7. Conclusion

� We present a model of a certification intermediary where the intermediary’s policy influ-
ences the seller’s investments in product quality as well as his decision on market entry. In our
setting, the presence of an intermediary creates a novel trade-off: It improves the seller’s incen-
tives to invest in quality upon entry but mutes his entry incentives ex ante. The intermediary faces
a canonical monopoly problem where a high certification fee facilitates rent extraction from the
seller but reduces the demand for certification service at the first place, due to the distortions in
both entry and investment incentives. We argue that a partial disclosure policy may be optimal as
it can allow the intermediary to charge a relatively high certification fee without causing a large
distortion in entry and investment.

Furthermore, we explore how the intermediary’s optimal disclosure policy may interact with
a public signal on product quality. A key insight that emerges from our model is that the informa-
tiveness of the intermediary’s signal varies non-monotonically with the public signal’s precision.
When the public signal is relatively noisy, the intermediary’s disclosure policy behaves as a sub-
stitute to the public signal—intermediary’s report becomes less informative as the public signal
becomes more precise—but when the public signal becomes sufficiently precise, the intermedi-
ary’s report may complement the public signal as the intermediary resorts to full disclosure. Our
model also indicates that under high entry cost, the optimal certification policy with full disclo-
sure may call for restricted entry. As a result, an increase in the precision of the public signal
may reduce social welfare. Therefore, in the markets with certification intermediaries common-
place interventions such as mandatory disclosure requirements or provision of additional public
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information that are geared toward alleviating the information asymmetry may be counterpro-
ductive and should be used with caution.

Appendix

This appendix contains the proofs omitted in the text.

Proof of Proposition 1. Clearly, at the optimum, the intermediary would choose a price below p̄ := 1 − (c + k)/α, as
otherwise the demand for the certification service drops to zero; even the most efficient type (i.e., θ = 1) would not enter
the market. Now, by plugging in the values of θE and θI , the program PF can be written as:

max
p∈(0, p̄)

� (p) := p Pr (v = 1 | θE , θI )

= p

[
1

2
(θI − θE ) + α (1 − θI )]

]

=
⎧⎨⎩�E (p) := p

[
1
2

c
(1−p)�

+ α
(

1 − c
(1−p)�

)]
if p ≤ pE

�I (p) := pα
[
1 − c

α(1−p)−k

]
if p ∈ [pE , p̄).

The first-order conditions imply:

p∗
E = arg max

p≤pE

�E =
{

1 −√
c
α

if k < kE := √
c

4α

1 − 2k otherwise
, (A1)

and

p∗
I = arg max

p>pE

�I = max

{
1 − 1

α

(
k +

√
c (α − k)

)
, 1 − 2k

}
(A2)

=
{

1 − 1
α

(
k +√

c (α − k)
)

if k > kI := 1
8�2

(−c + √
c2 + 16cα�2

)
1 − 2k otherwise

. (A2)

Hence, the associated value functions are:

�∗
E = max

p≤pE

�E (p) =
{
�E := α + c − 2

√
cα if k < kE

�E := α (1 − 2k)
(
1 − c

2kα

)
otherwise

, (A3)

and

�∗
I = max

p>pE

�I (p) =
{
�I := α + c − k − 2

√
c (α − k) if k ≥ kI

�I := α (1 − 2k)
(
1 − c

2k�

)
otherwise

. (A4)

As c < � (Assumption 1 (i)), we obtain kE < kI . The proposition follows from the claim that there exists a unique
k∗ ∈ (kI , 1/2) such that �∗

I ≥ �∗
E iff k ≥ k∗. The proof of this claim is given in the following steps:

Step 1: Recall from Assumption 1 (ii) that k ∈ ( c
2�
, 1

2
). As k → 1

2
, �∗

I = �I > �∗
E = 0 (as k → 1

2
, �I = (

√
�−√

c)2 > 0 by Assumption 1 (i)) and as k → c
2�

, �∗
I = �I = 0 < �∗

E = �E . As both �∗
I s are continuous functions of k,

they must intersect at some k = k∗, say.
Step 2: We have k∗ > kI ; and at k∗, we have �∗

E = �E = �I = �∗
I . The proof is as follows: Note that �E >

�I ∀k ∈ ( c
2�
, 1

2
). To see this, observe that the above inequality can be simplified as:

2
√

cα < k + 2
√

c(α − k) ∀k ∈
(

c

2�
,

1

2

)
.

Now, f (k) := k + 2
√

c(α − k) is an increasing function of k ( f ′ = 1 −√
c/(α − k) > 0 as α − k > c) where f (0) =

2
√

cα. Furthermore, we must have�I ≥ �I ∀k ∈ ( c
2�
, 1

2
) as the left-hand side is the value under unconstrained optimum

(notice that by definition of kI , the equality holds only under k = kI ). Combining the two, we get �E > �I ≥ �I ∀k ∈
( c

2�
, 1

2
).
As we know �∗

E intersects �∗
I at k∗, it must be the case that at k∗, �∗

E = �E = �∗
I . So, k∗ ∈ (kE , 1/2). Now, recall

that kE < kI , and so, for all k ∈ (kE , kI ], �∗
E = �E > �I = �∗

I (as α > �). As we know �E intersects �∗
I at k∗, it must

be the case that k∗ > kI and at k∗, we have �∗
E = �E = �I = �∗

I .
Step 3: It must be that k∗ is unique. Recall that at k = kI , �E > �I = �I (as � < α) and at k = 1/2, �E < �I .

Moreover �E is concave in k (∂2�E/∂k2 = −c/k3 < 0) and �I is convex in k (∂2�I/∂k2 = √
c/(2(α − k)3/2 ) > 0).

Hence k∗ must be unique. The proof is by contradiction. Suppose �E = �I at multiple k ∈ (kI , 1/2) and let k′ and k′′ be
the smallest and the largest solutions. As �E (k) > �I (k) for k ∈ (kI , k′ ), and �E (k) < �I (k) for k ∈ (k′′, 1/2), we have

�′
E (k′ ) < �

′
I (k′ ) and �′

E (k′′ ) > �
′

I (k′′ ).
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but as �E is concave in k, we have �′
E (k′ ) > �

′
E (k′′ ). So, we must have

�
′

I (k′ ) > �′
E (k′ ) > �

′
E (k′′ ) > �

′
I (k′′ ),

but this inequality contradicts the fact that �I is convex in k (as we must have �
′

I (k′ ) < �
′

I (k′′ )). �

Proof of Lemma 1. It is instructive to argue part (ii) first. This claim follows directly from the fact that both the low and
high quality sellers must find it sequentially rational to use the intermediary if pooling between qualities is feasible at the
first place.

We prove part (i) by contradiction. We argue that if the optimal partial disclosure policy excludes some types from
entry, the resulting payoff is less than that under full disclosure.

Step 1: In any equilibrium where only some types enter, it must be the case that entry is profitable only if the
seller invests. Now, we already argued that both types must use the intermediary in equilibrium. So, the intermediary’s
price cannot exceed t0. Hence, for any entry cutoff θI , the intermediary’s payoff is (1 − θI )t0. Moreover, the marginal
type must be willing to enter, whereas it must be unprofitable to enter if the firm does not undertake any investment.
Hence, the optimal policy must satisfy the following constraints: (i) Bayes Rationality (BR) : αt1 + (1 − α)t0 = α; (b)
Entry for marginal type (Eθ ) : α − k − c/θI ≥ t0; (c) Essentiality of investment (EI ) : t0 ≥ 1

2
(t0 + t1 ) − k. Hence, the

intermediary’s problem is:

P : max
t0 , t1 , θI

�̃ := (1 − θI )t0 s.t. (BR), (Eθ ), (EI ).

Step 2: Consider a relaxed problem P ′ : maxt0 , θI �̃R := (1 − θI )t0 s.t. (Eθ ). The solution to P ′:

θI =
√

c

α − k
and t0 = α − k −

√
c(α − k),

and the value of the problem is:

�̃∗
R = α + c − k − 2

√
c(α − k).

Step 3: From (BR), we have t1 = 1 − 1−α
α

t0. So, from (EI ), we obtain that the solution to the relaxed problem P ′

is feasible in the general problem P if k� > 1
2

√
c(α − k) ⇔ k ≥ kI . Let �̃∗ be the value of problem P . Thus, we have

�̃∗ ≤ �̃∗
R for all k, with the equality holding iff k ≥ kI .

Step 4: Finally, we argue that for all k, �̃∗
R ≤ �∗, the intermediary’s payoff under full disclosure, with equality

holding iff k ≥ k∗.
First, notice that from equation (A4) we have �̃∗

R = �I , and from the proof of Proposition 1, we know that�∗ = �I

for k ≥ k∗ > kI . Combining these two observations, we obtain that �̃∗
R = �∗ for k ≥ k∗.

Second, also from the proof of Proposition 1, we know that for k < k∗, �∗ = min{�E ,�E}. Recall that �∗ = �E

for k < kE and �E is constant in k, and for kE ≤ k < k∗, �∗ = �E , where �E is decreasing in k and intersects �I from
above at k∗. Now, it is routine to check that �I < �E for all k > 0, and �I < �E at k = kE . As �E is concave and �I is
convex in k (step 3 in proof of Proposition 1), it follows that �I < �∗ for all k < k∗.

Thus, we have �̃∗ ≤ �∗ for all k, with the equality holding iff k ≥ k∗. Hence, if partial disclosure is strictly optimal,
it must be the case that all types enter. �

Proof of Propositions 2 and 3. These results follow as special cases (where π = 1
2
) of Proposition 4 and Proposition 5,

respectively. �

The proof of Proposition 4 relies on the following lemma:

Lemma 2. (Optimal partial disclosure policy under full market coverage) The solution to P ′
P, (t̃0, t̃1, θ̃I ), is character-

ized as follows:
(i) The optimal cutoff above which all types of the seller invest in quality is given by

θ̃I = min{θ̂I (k), θ̄I (π )},
where θ̂I is independent of π but decreasing in k, and θ̄I is independent of k but decreasing in π .

(ii) There exist two thresholds, π and π , where 1
2
< π < π < 1, such that for any given k, θ̃I = θ̂I (k) if π < π ,

and θ̃I = θ̄I (π ) if π > π . Otherwise, that is, if π ∈ [π, π ], there exists a threshold kπ ∈ [
√

c
4α
,
√

c
4�

] such that θ̃I = θ̄I (π )

if k < kπ and θ̃I = θ̂I (π ) otherwise. Moreover, kπ is increasing in π .
(iii) The seller’s prices t̃0 and t̃1 solve (BR) and (IC) evaluated at θ̃I .

C© The RAND Corporation 2020.



1006 / THE RAND JOURNAL OF ECONOMICS

Proof. Part (i): We solve P ′
P in the following two steps:

Step 1: Consider the relaxed problem P ′
P,R obtained from P ′

P by ignoring (L1 ) and (U0 ), and replacing (IC) by

θI = c

(t1 − t0 )�
(ICR ).

Step 1a: Using (ICR ) and (BR) constraints to solve for tis, we obtain:

t0(θI ) = v(θI ) − c

θI

( α
�

− θI

)
, t1(θI ) = v(θI ) + c

θI

(
1 − α

�
+ θI

)
, (A5)

where v(θI ) = α(1 − θI ) + 1
2
θI . So, P ′

P,R boils down to:

max
θI ∈[0,1]

p(θI ) = min

{
1

2
(t0(θI ) + t1(θI )) − k, t0(θI )

}
.

Step 1b: Notice the following:
(a) Both t0(θI ) and t0(θI ) + t1(θI ) are concave in θI ; hence, so is p(θI ).
(b) 1

2
{t0(θI ) + t1(θI )} − k − t0(θI ) is decreasing in θI , and the equation 1

2
{t0(θI ) + t1(θI )} − k − t0(θI ) = 0 has a

unique root c
2k�

. Hence,

p (θI ) =
{

t0 (θI ) if θI <
c

2k�
1
2
{t0 (θI ) + t1 (θI )} − k otherwise

.

(c) Finally,

arg max
θI

t0(θI ) = 1

�

√
cα, and arg max

θI

1

2
{t0(θI ) + t1(θI )} − k =

√
c

�
.

where
√

c
�
< 1

�

√
cα.

Step 1c: The observations (a) to (b) imply the following:
(A) if 1

�

√
cα < c

2k�
, that is, if k <

√
c

4α
,

max p(θI ) = max t0(θI ),

(B) if c
2k�

<
√

c
�

, that is, k >
√

c
4�

,

max p(θI ) = max
1

2
{t0(θI ) + t1(θI )} − k,

(C) otherwise,

max p(θI ) = t0

( c

2k�

)
.

Hence, the solution to the relaxed problem is as follows:

θ̂I =
⎧⎨⎩

1
�

√
cα if k <

√
c

4α
c

2k�
if k ∈ [√

c
4α
,
√

c
4�

]√
c
�

if k >
√

c
4�

. (A6)

It is routine to check that θ̂I is decreasing in k.
Step 2: Consider the original problem P ′

P. Note that the solution to P ′
P,R satisfies (IC) as 1

�

√
cα < 1 (by Assumption

1 (i)). So, it remains to check when θ̂I may violate the constraints (L1 ) and (U0 ) and what is the solution to P ′
P in such a

scenario. Notice that:

t1(θI ) = π 2v(θI )

πv(θI ) + (1 − π )(1 − v(θI ))
+ (1 − π )2v(θI )

(1 − π )v(θI ) + π (1 − v(θI ))
, (A7)

and

t0(θI ) = π (1 − π )v(θI )

(1 − π )v(θI ) + π (1 − v(θI ))
+ (1 − π )πv(θI )

πv(θI ) + (1 − π )(1 − v(θI ))
, (A8)

where v(θI ) = 1
2
θI + α(1 − θI ), as defined earlier.

Step 2a: For θI ≤ 1
�

√
cα, it is routine to check that (i) t1(θI ) − t1(θI ) is (strictly) decreasing and t0(θI ) − t0(θI ) is

(strictly) increasing in θI . (ii) t1(θI ) is increasing in π and for all θI , t1(θI ) → 1 as π → 1. (iii) t0(θI ) is decreasing in π
and for all θI , t0(θI ) → 0 as π → 1.

Step 2b: Note that t0(θI ) → −∞ and t1(θI ) → ∞ as θI → 0. Hence, using the observations (i) to (iii) in Step 2a
above, we can claim the following:

C© The RAND Corporation 2020.



CHOI AND MUKHERJEE / 1007

(I) Either t1(θI ) ≥ t1(θI ) for all θI ∈ (0, 1
�

√
cα], or there exists a unique θ ∈ (0, 1

�

√
cα], θ 1

I (say), such that t1(θ 1
I ) =

t1(θ 1
I ) and t1(θI ) ≥ t1(θI ) iff θI ≤ θ 1

I . Moreover, θ 1
I is continuous and decreasing in π as t1(θI ) is increasing in π for all

θI whereas t1(θI ) is independent of π .
(II) Either t0(θI ) ≤ t0(θI ) for all θI ∈ (0, 1

�

√
cα], or there exists a unique θ ∈ (0, 1

�

√
cα], θ 0

I (say), such that
t0(θ 0

I ) = t0(θ 0
I ) and t0(θI ) ≤ t0(θI ) iff θI ≤ θ 0

I . Moreover, θ 0
I is continuous and decreasing in π as t0(θI ) is decreasing

in π for all θI whereas t0(θI ) is independent of π .
(III) If θ 0

I exists, so does θ 1
I , and vice versa. Moreover, it must be that θ 1

I = θ 0
I . To see this consider the term

φ(θI ) := v(θI )
(
t1(θI ) − t1(θI )

)+ (1 − v(θI ))
(
t0(θI ) − t0(θI )

)
.

Notice that by (BR),

φ(θI ) = v(θI ) − [
v(θI )t1(θI ) + (1 − v(θI ))t0(θI )

]
= v(θI ) − {

v(θI )Ez|v=1Ev[v | z,�E = [0, 1], �I = [θI , 1]]
+(1 − v(θI ))Ez|v=0Ev[v | z,�E = [0, 1], �I = [θI , 1]]

}
= v(θI ) − v(θI ) = 0.

Hence, if θ 0
I exists such that t0(θ 0

I ) − t0(θ 0
I ) = 0, it must be that t1(θ 0

I ) − t1(θ 0
I ) = 0; that is, θ 0

I = θ 1
I .

Step 2c: Define

θ̄I =
{
θ 0

I if exists
1
�

√
cα otherwise

. (A9)

As p(θI ) is concave, if θ̂I is not feasible under (L1 ) and (U0 ), p(θI ) is maximized at the largest feasible θI < θ̂I . That is,
the solution to P ′

P is:

θ̃I = min{θ̂I , θ̄I }. (A10)

Finally, θ̄I is decreasing in π as θ 0
I (= θ 1

I ) is.
This observation completes the proof if part (i).
Part (ii): For π = 1

2
, t0(θI ) < t0(θI ) = v(θI ) and t1(θI ) > t1(θI ) = v(θI ) for all θI . Hence, from observations in step

2a above, we can claim that there exists a π such that for all π < π , θ 0
I (= θ 1

I ) does not exist and therefore, θ̄I = 1
�

√
cα.

So, θ̃I = θ̂I as 1
�

√
cα ≥ θ̂I (by A6). Similarly, as θ 0

I (= θ 1
I ) is continuous and decreasing in π ,there exists a π > π such

that for all π > π , θ̄I = θ 0
I <

√
c
�

, and hence, θ̃I = θ̄I . For π ∈ [π, π ], θ̄I ∈ [
√

c
�
, 1
�

√
cα]. As θ̂I is decreasing in k, for the

expression for θ̂I we obtain that there exists a kπ ∈ [
√

c
4α
,
√

c
4�

] such that θ̂I ≤ θ̄I iff k ≥ kπ . Hence, θ̃I = min{θ̂I , θ̄I } = θ̄I

iff k < kπ . Finally, as θ̂I is decreasing in k (but independent of π ) whereas θ̄I is independent of k but decreasing in π , kπ
must be increasing in π .

Part (iii): This observation directly follows from the fact at any feasible solution to P ′
P, (BR) and (IC) must

hold. �

Proof of Proposition 4. Step 1. It follows from Proposition 1 (using equations (A3) and (A4)) that the intermediary’s
payoff under full disclosure is given as:

�∗ =
⎧⎨⎩
�E = α + c − 2

√
cα if k <

√
c

4α

�E = α (1 − 2k)
(
1 − c

2αk

)
if k ∈ [√

c
4α
, k∗]

�I = α + c − 2
√

c (α − k) − k if k > k∗
. (A11)

Step 2. If π < π , by Lemma 2 we know that there exists a kπ ∈ [
√

c
4α
,
√

c
4�

] such that the solution to the program P ′
P

yields:

θ̃I =
⎧⎨⎩
θ̄I if k < kπ

c
2k�

if k ∈ [
kπ ,

√
c

4�

]√
c
�

if k >
√

c
4�

, (A12)

As θ̄I = θ̂I (kπ ) = c
2kπ�

, θ̃I is continuous. Let �P be the value associated with the program P ′
P. So, we have:

�P (k) =

⎧⎪⎨⎪⎩
α (1 − 2kπ )

(
1 − c

2αkπ

)
if k < kπ

α (1 − 2k)
(
1 − c

2αk

)
if k ∈ [

kπ ,
√

c
4�

]
α + c − 2

√
c�− k if k >

√
c

4�

.

Now, recall that �E − �̄I is decreasing in k, strictly positive at k = √
c

4�
, but 0 at k∗. So k∗ >

√
c

4�
. So, from

(A11) and (A12) it readily follows that �P(k) > �∗ iff k > k′ := √
c

4�
.

(This case subsumes the case of π = 1
2
, and hence, proves Proposition 2.)

C© The RAND Corporation 2020.



1008 / THE RAND JOURNAL OF ECONOMICS

Step 3. If π > π , by Lemma 2 (part (ii)), we have θ̃I = θ̄I <
√

c
�

. So,

�P (k) =
{
α (1 − 2k1 )

(
1 − c

2αk1

)
if k ≤ k1

1
2

{
t0

(
θ̄I

)+ t1

(
θ̄I

)}− k if k > k1

,

where

k1 := c

2θ̄I�
, or, equivalently, θ̄I = c

2k1�
. (A13)

Notice that �P(k) is continuous and decreasing in k, as, by definition of k1, we have:

α(1 − 2k1 )

(
1 − c

2αk1

)
= t0

(
θ̄I

) = 1

2

{
t0

(
θ̄I

)+ t1

(
θ̄I

)}− k1.

Step 4. Now, if k1 < k∗, we have

α(1 − 2k1 )

(
1 − c

2αk1

)
= 1

2

{
t0

(
θ̄I

)+ t1

(
θ̄I

)}− k1 > α + c − 2
√

c(α − k1 ) − k1.

At k = 1
2
, we must also have

1

2

{
t0

(
θ̄I

)+ t1

(
θ̄I

)}− k < α + c − 2
√

c(α − k) − k.

To see this, notice that

1

2

{
t0

(
θ̄I

)+ t1

(
θ̄I

)}
<

1

2

{
t0

(√
c

�

)
+ t1

(√
c

�

)}
,

as t0(θI ) + t1(θI ) is strictly increasing in θI for θI <
√

c
�

and θ̄I <
√

c
�

. Also,

1

2

{
t0

(√
c

�

)
+ t1

(√
c

�

)}
= α + c − 2

√
c(α − k) when k = 1

2
.

So, there exists a cutoff k2 where k2 > k∗ > k1 and is the unique solution to

1

2

{
t0

(
θ̄I

)+ t1

(
θ̄I

)} = α + c − 2
√

c(α − k), (A14)

such that �P(k) > �∗ iff k ∈ (k1, k2 ).
Step 5. Note that at π = 1

2
, θ̄I = √

c
�

. So, k1 = √
c

4�
and k2 = 1

2
. As θ̄I is decreasing in π , (A13) and (A14) imply

that k1 is increasing and k2 is decreasing in π . So (k1, k2 ) shrinks in π .
Furthermore, as π → 1, �P(k) → 0 for any k (as t0 → 0), and hence, k1 → 1

2
(> k∗ ). So, there exists a threshold

for π , πFD (say) such that for π > πFD, k1 > k∗, and therefore, �P(k) < �∗ for all k. �

Proof of Proposition 5. Step 1: Consider any equilibrium where partial disclosure is optimal and the solution to the
intermediary’s problem is (t̃0, t̃1, θ̃I ). Notice that:

t1(θI ) = E(x,z)|v=iEv

[
v | x, z, �E = [0, 1], �I = [θ̃I , 1]

]
= ∑

x,z Pr[v = 1 | x, z, θ̃I ] × Pr [x, z | v = 1]

= Pr[v = 1 | x1, z = 1, θ̃I ] × Pr [x1, z = 1 | v = 1]
+ Pr[v = 1 | x1, z = 0, θ̃I ] × Pr [x1, z = 0 | v = 1]

= Pr[v = 1 | x1, z = 1, θ̃I ]π + Pr[v = 1 | x1, z = 0, θ̃I ](1 − π ).

Step 2: Now, consider a disclosure policy where the set of signals is X = {x1, x0} and Pr(x1 | v = 1) = 1 and Pr(x1 | v =
0) = ρ. Under this policy, for a given ρ, we have:

Pr
[
v = 1 | x1, z = 1, θ̃I

] = Pr
[
x1, z = 1 | v = 1, θ̃I

]
Pr
[
v = 1 | θ̃I

]∑
v Pr

[
x1, z = 1 | v, θ̃I

]
Pr
[
v | θ̃I

]
= πv(θ̃I )

πv(θ̃I ) + ρ(1 − π )
(
1 − v(θ̃I )

) ,
and, similarly,

Pr
[
v = 1 | x1, z = 0, θ̃I

] = (1 − π )v(θ̃I )

(1 − π )v(θ̃I ) + ρπ
(
1 − v(θ̃I )

) .
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Thus, we have

t1(θI ) = π 2v(θ̃I )

πv(θ̃I ) + ρ(1 − π )
(
1 − v(θ̃I )

) + (1 − π )2v(θ̃I )

(1 − π )v(θ̃I ) + ρπ
(
1 − v(θ̃I )

) ,
and ρ must solve:

t̃1 = π 2v(θ̃I )

πv(θ̃I ) + ρ(1 − π )
(
1 − v(θ̃I )

) + (1 − π )2v(θ̃I )

(1 − π )v(θ̃I ) + ρπ
(
1 − v(θ̃I )

) . (A15)

Step 3: As ρ takes all values from 0 to 1, and hence the right-hand side takes all values from t1(θ̃I ) to 1, where

t1

(
θ̃I

) = Ez|v=1Ev

[
v | z,�E = [0, 1], �I = [θ̃I , 1]

]
= π 2v(θ̃I )

πv(θ̃I ) + (1 − π )
(
1 − v(θ̃I )

) + (1 − π )2v(θ̃I )

(1 − π )v(θ̃I ) + π
(
1 − v(θ̃I )

) .
Hence, for any t̃1 ∈ [t1(θ̃I ), 1], there exists a value of ρ that satisfies (A15). The corresponding value of t̃0 is

uniquely pins down by (BR) as

t̃0 = v(θ̃I )

1 − v(θ̃I )

(
1 − t̃1

)
.

Hence, the optimal disclosure policy can be implemented by a signal structure given in Proposition 3.
Step 4: Fix any k > k′ := √

c
4�

. From Proposition 4, we know that for π ≤ π , the optimal disclosure policy calls
for partial disclosure. Moreover, part (ii) of Lemma 2 implies that at the optimum, t̃1 = t1(

√
c
�

), and hence, a constant

with respect to π (for k >
√

c
4�

, θ̃I = θ̂I for all π and θ̂I = √
c
�

by equation (A6)). Now the right-hand side of (A15) is
increasing in π and decreasing in ρ. Hence, as π increases (but π < π ), ρ must increase to keep t̃1 constant.

From part (ii) of Proposition 4 we also know that for π ∈ (π, πFD], the optimal disclosure policy calls for no
disclosure as long as k ∈ (k1(π ), k2(π )), k1(π ) > k′. Moreover, (k1(π ), k2(π )) = (k′, 1

2
), both k1 and k2 are continuous,

and k1 is strictly increasing in π whereas k2 is strictly decreasing in π . Hence, for any k > k′, there exists a value
of π ∈ (π, πFD], πFD

k (say), such that for π ∈ (π, πFD
k ], k ∈ (k1(π ), k2(π )), and hence no disclosure is optimal. Thus,

we must have t1(θI ) = t0(θI ) (as given by equation (A8), which is attained by setting ρ = 1. Similarly, for π > πFD
k ,

k �∈ (k1(π ), k2(π )) and full disclosure is optimal. Hence, we must have ρ = 0 for π > πFD
k . �

In order to prove Proposition 6, it is useful to state the proposition more formally:

Proposition 6
′
: (i) ∂WI/∂π �= 0 only if π ∈ [π, πFD].

(ii) Suppose that π increases from π ′ to π ′′ where π ′ < πFD and π ′′ > π . (a) If π ′′ < πFD, that is,
(k1(π ′′ ), k2(π ′′ )) �= ∅, WI (strictly) increases if k ∈ [k1(π ′ ), k2(π ′′ )], decreases if k ∈ [k2(π ′′ ), k2(π ′ )], and remains con-
stant if k < k1(π ′ ) or k > k2(π ′ ). (b) If π ′′ > πFD, that is, full disclosure is optimal for all k at π ′′ as (k1(π ′′ ), k2(π ′′ )) = ∅,
WI (strictly) increases if k ∈ [k1(π ′ ), k∗], but decreases otherwise.

(iii) WI − WNI is (weakly) decreasing in π .

Below, we first present the proofs of parts (i) and (ii) of Proposition 6′.

Proof of Proposition 6′. We being by stating a few preliminary observations.
Notice that for any given type cutoff for entry (θE ) and investment (θI ), the aggregate surplus is given as:

W (θE , θI ) = (θI − θE )

(
1

2
− k

)
+
∫ 1

θI

(
α − c

θ
− k

)
dθ.

Using Propositions 1 and 4, we obtain:

if π < πFD,WI =
⎧⎨⎩

W (0, θ ∗
I ) if k ≤ k1 (π )

W
(
θ ∗

I , θ
∗
I

)
if k ≥ k2 (π )

W (0, θ̃I ) otherwise
,

otherwise,WI =
{

W (0, θ ∗
I ) if k ≤ k∗

W
(
θ ∗

I , θ
∗
I

)
if k ≥ k∗ ,

where θ ∗
I and θ̃I are the investment type cutoff in the optimal full and partial disclosure policies, respectively (i.e., the

cutoffs obtained in the solutions to PF with P ′
P).
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Thus, by equations (A1) and (A2) we have:

θ ∗
I =

{
θ

f
I := c/

(
1 − p∗

E

)
� = min

{√
cα
�
, c

2k�

}
if k < k∗

θ i
I := c/

(
α
(
1 − p∗

I

)− k
) = √ c

α−k
otherwise

.

Also, recall that

θ̃I = min{θ̂I , θ̄I },
where θ̂I and θ̄I are given by equations (A6) and (A9), respectively. We are now ready present the proofs of parts (i) and
(ii).

Part (i): Step 1. From the proof of Proposition 4 (step 2), we know that if π ≤ π , (k1(π ), k2(π )) = (
√

c
4�
, 1

2
), and

the following holds: (a) for all k <
√

c
4�

, full disclosure is optimal and the associated θE = 0 and θI = θ
f

I , (b) for all

k ≥ √
c

4�
, partial disclosure is optimal and the associated θE = 0 and θI = θ̃I . Moreover, from the proof of Lemma 2

(part (ii)), we know that θ̃I = θ̂I for all k > kπ ≥ √
c

4�
. Since both θ f

I and θ̂I are independent of π , WI is invariant to π .

Step 2. If π ≥ πFD, WI depends on θ f
I , θ i

I , and k∗, all of which are invariant to π ; and hence, so is WI .

Part (ii): Step 1. First consider the case where π ′′ < πFD, that is, (k1(π ′′ ), k2(π ′′ )) �= ∅. The proof is obtained by
characterizing WI in each of the following mutually exclusive and exhaustive parameter ranges for k.

Step 1a: For k < k1(π ′ ), full disclosure remains as the optimal policy with θE = 0 and θI = θ
f

I . Hence, there is no
change in WI .

Step 1b: For k ∈ [k1(π ′ ), k1(π ′′ )), optimal policy switches from partial disclosure where (θE , θI ) = (0, θ̃I ) to full
disclosure where (θE , θI ) = (0, θ f

I ). We claim that for k ∈ [k1(π ′ ), k1(π ′′ )) and π = π ′, θ̃I ≥ θ
f

I . The argument is as fol-
lows.

As π ′′ < πFD, k1(π ′′ ) < k∗. So, for any k ∈ [k1(π ′ ), k1(π ′′ )) ⊆ [
√

c
4�
, k∗ ), θ f

I = c
2k�

, and hence, strictly decreasing

in k, but θ̃I remains constant. If π ′ ≤ π , from the proof of Proposition 4, we know that k1(π ′ ) = √
c

4�
. Hence, by Lemma 2

part (ii), θ̃I = θ̂I = c
2k1 (π ′ )� = √

c
�

. Also, if π ′ > π , from Lemma 2 (part (ii)), we have θ̃I = θ̄I = c
2k1 (π ′ )� (the last equality

follows from equation (A13) in the proof of Proposition 4). Hence, for all k ∈ [k1(π ′ ), k1(π ′′ )), θ̃I = c
2k1 (π ′ )� ≥ c

2k�
= θ

f
I .

Step 1c: For k ∈ [k1(π ′′ ), k2(π ′′ )] partial disclosure remains optimum. So, we have (θE , θI ) = (0, θ̃I ) and θ̃I =
min{√ c

�
, θ̄I }. Hence, WI is increasing in π as θI is decreasing in π .

Step 1d: Finally, for k > k2(π ′′ ), two cases can arise: (i) for k > k2(π ′ ) > k2(π ′′ ) full disclosure remains as the
optimal policy where (θE , θI ) = (θ i

I , θ
i
I ), and hence there is no change in WI for a given k. (ii) For k ∈ (k2(π ′′ ), k2(π ′ )] the

optimal policy switches from partial disclosure to full disclosure and the associated type cutoffs change from (θE , θI ) =
(0, θ̃I ) to (θ i

I , θ
i
I ), but notice that WI (0, θ̃I ) ≥ WI (0,

√
c
�

) >WI (θ i
I , θ

i
I ). The first inequality follows from the fact that for

such k, θ̃I = min{√ c
�
, θ̄I } and WI is decreasing in θI . The second inequality follows as WI (0,

√
c
�

) = WI (θ i
I , θ

i
I ) at k = 1

2

(recall that θ i
I = √ c

α−k
), and for k < 1

2
, ∂

∂k
WI (0,

√
c
�

) = −1, whereas ∂

∂k
WI (θ i

I , θ
i
I ) = −1 + 1

2
( c
α−k

+√ c
α−k

) ∈ (−1, 0).
Step 2. The case where π ′′ ≥ πFD can be treated exactly as above by setting k1(π ′′ ) = k2(π ′′ ) = k∗ .

The proof of part (iii) of Proposition 6′ relies on a set of lemmas given below.

Lemma 3. If there is no intermediary in the market, the equilibrium has the following features:
(i) Entry is always efficient—all types of the seller enter (i.e., θE = 0).
(ii) Investment may be inefficient. There exists a threshold πNI (depending on c) such that if π < πNI no type

invests. Otherwise, there exists a unique cutoff θNI
I such that all types θ ≥ θNI

I invest. Moreover, θNI
I is decreasing in π .

Proof. Step 1. Denote

vi(�E , �I ) =
∑

z∈{0,1}
E(v | z; �E , �I ) Pr (z | I = i),

which is the expected price the seller receives when his investment decision is I and the buyers believe that the set of
types that enter is�E and the set of types that invest is�I . Now, for type θ , the expected payoff from entry and investment
decision I is:

V (I; θ,�E , �I ) =
{

v1 (�E , �I ) − k − c
θ

if I = 1
v0 (�E , �I ) − k if I = 0

.

As for any�E and�I , V (1; θ,�E , �I ) is increasing in θ whereas V (0; θ,�E , �I ) is constant, in any equilibrium,
the seller’s investment decision must follow a cutoff strategy as the seller invests if and only if V (1; θ,�E , �I ) ≥
V (0; θ,�E , �I ) .

Step 2. Let θ ′ be the investment cutoff type, that is, �I = [θ ′, 1]. For brevity of notation, denote

vi(θ
′ ) = vi

(
�E = [0, 1], �I = [

θ ′, 1
])
,
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and

E(v | z; θ ′ ) = E
(
v | z; �E = [0, 1], �I = [

θ ′, 1
])
.

We need to show that there exists a unique θNI
I such that (i) v1(θNI

I ) − v0(θNI
I ) = c

θNI
I

and (ii) V (0; θ,�E , �I ) =
v0(θNI

I ) − k > 0.
Step 3. It is useful to note that Pr(z = 1 | I ) = ∑

k∈{0,1}
Pr(z = 1 | v = k)P(v = k | I ); so,

Pr (z = 1 |I = 1) = πα + (1 − π )(1 − α), and Pr (z = 1 | I = 0) = 1/2.

Also,

E(v | z; θ ′ ) = Pr (v = 1 | z; θ ′ ) = Pr (z | v = 1) Pr (v = 1 | θ ′ )

Pr (z | θ ′ )
.

We thus have

E(v | z = 1; θ ′ ) = π (α − θ ′�)

π (α − θ ′�) + (1 − π )(1 − α + θ ′�)
,

and

E(v | z = 0; θ ′ ) = (1 − π )(α − θ ′�)

π (1 − α + θ ′�) + (1 − π )(α − θ ′�)
.

Step 4. Note that

∂

∂θ ′ E(v | z = 1; θ ′ ) = − (1 − π )π�

(1 − (π − α(2π − 1) + (2π − 1)θ ′�))2 < 0,

and

∂

∂θ ′ E(v | z = 0; θ ′ ) = − α(1 − π )π�

(π − α(2π − 1) + (2π − 1)θ ′�)2 < 0.

This implies that both v1 and v0 are decreasing functions of θ ′. Note that v0(1) = 1
2
. So, v0(θ ′ ) ≥ 1

2
> k for any investment

cutoff type θ ′ ∈ [0, 1]. Hence, all types of the seller enter for any investment cutoff θ ′. This observation completes the
proof of part (i) of the proposition. To prove part (ii), we proceed as follows.

Step 5. Now we show that there exists a unique type cutoff for investment. Let ψ (θ ′ ) = v1(θ ′ ) − v0(θ ′ ) denote
the private value of investment in the presence of adverse selection due to asymmetric information about the product’s
quality. This value depends on the investment cutoff θ ′. Using the above expressions, we obtain

∂

∂θ ′ψ (θ ′ ) = 1

(D(1 − D))2

[
π (1 − π )(�(2π − 1))2(2α − 1 − 2θ ′�)

]
.

where D is a linear function of θ ′. Note that α ≥ α − θ ′� ≥ 1/2 as 2α − 1 − 2θ ′� ≥ 0. As a result, we have ∂

∂θ ′ ψ (θ ′ ) ≥
0.

Step 6. Note that ψ (θ ′ ) < c/θ ′ as θ ′ → 0. So, if ψ (1) = (2π − 1)2� < c, or, equivalently,

π <
1

2
+
√

c

4�
=: πNI ,

ψ (θ ′ ) < c/θ ′ for all θ ′ (as ψ ′ ≥ 0) and none of the types invests. Otherwise, there exists a cutoff type, θNI
I (say), such

that ψ (θNI
I ) = c/θNI

I .
Step 7. Finally, note that

∂

∂π
ψ (θ ′ ) = 1

(D(1 − D))2 A(1 − A)(2π − 1)� > 0,

where A = α (1 − θ ′ ) + 1
2
θ ′ ∈ (

1
2
, 1
)
. Hence, θNI

I is decreasing in π . �

Lemma 4. Suppose that all types enter but only type θ > θ ∗ ∈ [0, 1] invests. Then,

v1(θ ∗ ) − v0(θ ∗ ) = �
(
t1(θ ∗ ) − t0(θ ∗ )

)
.

Proof. The proof follows from direct computation of the terms given in the equation above. Denote E(v | z; θ ∗ ) :=
E(v | z; �E = [0, 1], �I = [θ ∗, 1]) and recall that

vi(θ
∗ ) :=

∑
z∈{0,1}

E(v | z; θ ∗ ) Pr (z | I = i), i = 0, 1,
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that is, the expected value of the product after z is realized. Also note that,

t1(θ ∗ ) − t0(θ ∗ ) = Ez|v=1Ev(v | z; θ ∗ ) − Ez|v=0Ev(v | z; θ ∗ )
= [

E(v | z = 1; θ ∗ )π + E(v | z = 0; θ ∗ )(1 − π )
]

−[E(v | z = 1; θ ∗ )(1 − π ) + E(v | z = 0; θ ∗ )π
]
.

Now,

v1(θ ∗ ) − v0(θ ∗ ) =
∑

i∈{0,1}

[∑
z∈{0,1}

E(v | z; θ ∗ ) Pr (z | I = i)

]
,

and
Pr (z = 1 | I = 1) = ∑

v∈{0,1}
Pr (z = 1 | v, I = 1) Pr (v | I = 1)

= πα + (1 − π )(1 − α),

and

Pr (z = 1 | I = 0) = 1

2
π + 1

2
(1 − π ) = 1

2
.

So,

v1(θ ∗ ) − v0(θ ∗ ) = ∑
i∈{0,1}

[ ∑
z∈{0,1}

E(v | z; θ ∗ ) Pr (z | I = i)

]
= E(v | z = 1; θ ∗ )π�+ E(v | z = 1; θ ∗ )

(
(1 − π )(1 − α) − 1

2
(1 − π )

)
−E(v | z = 0; θ ∗ )(πα + (1 − π )(1 − α)) + E(v | z = 0; θ ∗ )

(
1
2
π + 1

2
(1 − π )

)
= E(v | z = 1; θ ∗ )π�− E(v | z = 1; θ ∗ )(1 − π )�

−E(v | z = 0; θ ∗ )π�+ E(v | z = 0; θ ∗ )(1 − π )�

= �
(
t1(θ ∗ ) − t0(θ ∗ )

)
.

Hence the proof. �

Lemma 5. For π ≥ π and k ∈ [k1(π ), k2(π )], θ̃I = θNI
I . Also, for π < π and k >

√
c

4�
, θ̃I = √

c
�

.

Proof. For π ≥ π and k ∈ [k1(π ), k2(π )], θ̃I = θ̄I where for (IC) we have

�
(
t1

(
θ̄I

)− t0

(
θ̄I

)) = c

θ̄I

.

So, using Lemma 4, we have

v1

(
θ̄I

)− v0

(
θ̄I

) = �
(
t1

(
θ̄I

)− t0

(
θ̄I

)) = c

θ̄I

. (A16)

Now, θNI
I is the unique solution to

v1(θ ) − v0(θ ) = c

θ
. (A17)

Hence, we must have

θNI
I = θ̄I = θ̃I .

For π < π , θ̃I = θ̂I , and hence, from equation (A6) we have θ̃I = √
c
�

for k >
√

c
4�

. �

Lemma 6. πNI < π .

Proof. By definition, equation (A17), that is,

v1(θ ) − v0(θ ) = c

θ
,

has a unique solution in [0,1) if and only if π > πNI and no solution otherwise. Also, by definition, at π = π , θ̄I = √
c
�
<

1 and �(t1(θ̄I ) − t0(θ̄I )) = c
θ̄I
.But by equation (A16) as given in the proof of Lemma 5, θ̄I = √

c
�

is also a solution to
equation (A17). Since equation (A17) does not have any solution for π ≤ πNI , we must have π > πNI . �

We are now ready to present the proof of part (iii) of Proposition 6′.
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Proof of Proposition 6′. Part (iii). Step 1. By Lemma 3, we can write the aggregate surplus in the absence of the
intermediary, WNI , as:

WNI =
{

W (0, 1) if π < πNI

W (0, θNI
I ) otherwise

. (A18)

Note that WNI is invariant to π if π < πNI but increases otherwise (as θNI
I is decreasing in π ).

Step 2. For π < π , WI is invariant to π as it depends on either θ f
I or θ i

I , and both are independent of π . Hence, for
π < πNI , WI − WNI is constant (note that by Lemma 6, πNI < π ) but for π ∈ [πNI , π ), WI − WNI is strictly decreasing
in π .

Next, consider π ∈ [π, πFD ). If k �∈ (k1(π ), k2(π )), WI is invariant to π as it only depends on either θ f
I or θ i

I .
Otherwise, WI = W (0, θ̃I ) = W (0, θNI

I ) = WNI (by Lemma 5 ). Hence, in the former case, WI − WNI is strictly decreasing
in π and in the later case WI − WNI = 0 for all such π .

Finally, for π ≥ πFD, WI is still invariant to π as k∗ is also independent of π . So, WI − WNI is strictly decreasing in
π . Hence, the proof. �

References

Albano, G. and Lizzeri, A. “Strategic Certification and the Provision of Quality.” International Economic Review, Vol.
42 (2001), pp. 267–283.

Belleflame, P. and Peitz, M. “Asymmetric Information and Overinvestment in Quality.” European Economic Review,
Vol. 66 (2014), pp. 127–143.

Bergemann, D., Bonatti, A. and Smolin, A. “The Design and Price of Information.” American Economic Review, Vol.
108 (2018), pp. 1–48.

Bergemann, D., Brooks, B. and Morris, S. “The Limits of Price Discrimination.” American Economic Review, Vol.
105 (2015), pp. 921–957.

Bergemann, D. and Morris, S. “Information Design: A Unified Perspective.” Journal of Economic Literature, Vol. 57
(2019), pp. 44–95.

Biglaiser, G. “Middlemen as Experts.” RAND Journal of Economics, Vol. 24 (1993), pp. 212–223.
Biglaiser, G. and Friedman, J.W. “Middlemen as Guarantors of Quality.” International Journal of Industrial Organi-

zation, Vol. 12 (1994), pp. 509–531.
Boleslavsky, R. and Cotton, C. “Grading Standards and Educational Quality.” American Economic Journal: Microe-

conomics, Vol. 7 (2015), pp. 248–279.
Boleslavsky, R. and Kim, K. “Bayesian Persuasion and Moral Hazard,” Mimeo, University of Miami, 2018.
Costrell, R. M. “A Simple Model of Educational Standards.” American Economic Review, Vol. 84 (1994), pp. 956–971.
Dranove, D. and Jin, G. Z. “Quality Disclosure and Certification: Theory and Practice.” Journal of Economic Literature,

Vol. 48 (2010), pp. 935–963.
Dubey, P. and Geanakoplos, J. “Grading Exams: 100,99,98… or A,B,C?” Games and Economic Behavior , Vol. 69

(2010), pp. 72–94.
Guo, Y. and Shimaya, E. “The Interval Structure of Optimal Disclosure.” Econometrica, Vol. 87 (2019), pp. 653–675.
Harbaugh, R. and Rasmusen, E. “Coarse Grades: Informing the Public by Withholding Information.” American Eco-

nomic Journal: Microeconomics, Vol. 10 (2018), pp. 210–235.
Hui, X., Saeedi, M., Spagnolo, G. and Tadelis, S. “Certification, Reputation and Entry: An Empirical Analysis.”

Working Paper No. 24916, NBER, 2018.
Kamenica, E. and Gentzkow, M. “Bayesian Persuasion.” American Economic Review, Vol. 101 (2011), pp. 2590–2615.
Kolotilin, A., Mylovanov, T., Zapechelnyuk, A. and Li, M. “Persuasion of a Privately Informed Receiver.” Econo-

metrica, Vol. 85 (2017), pp. 1949–1964.
Levy, G. “Decision Making in Committees: Transparency, Reputation, and Voting Rules.” American Economic Review,

Vol. 97 (2007), pp. 150–168.
Lizzeri, A. “Information Revelation and Certification Intermediaries.” RAND Journal of Economics, Vol. 30 (1999), pp.

214–231.
Mankiw, N. G. and Whinston, M. D. “Free Entry and Social Inefficiency.” RAND Journal of Economics, Vol. 17 (1986),

pp. 48–58.
Milgrom, P. and Roberts, J. “Relying on the Information of Interested Parties.” RAND Journal of Economics, Vol. 17

(1986), pp. 18–32.
Ostrovsky, M. and Schwarz, M. “Information Disclosure and Unraveling in Matching Markets.” American Economic

Journal: Microeconomics, Vol. 2 (2010), pp. 34–63.
Prat, A. “The Wrong Kind of Transparency.” American Economic Review, Vol. 95 (2005), pp. 862–877.
Rayo, L. and Segal, I. “Optimal Information Disclosure.” Journal of Political Economy, Vol. 118 (2010), pp. 949–987.
Roesler, A-K. and Szentes, B. “Buyer-Optimal Learning and Monopoly Pricing.” American Economic Review, Vol.

107 (2017), pp. 2072–80.
Rosar, F. “Test Design under Voluntary Participation.” Games and Economic Behavior, Vol. 104 (2017), pp. 632–655.
Spence, M. A. “Product Selection, Fixed Costs, and Monopolistic Competition.” Review of Economic Studies, Vol. 43

(1976), pp. 217–236.

C© The RAND Corporation 2020.


